Электрические свойства твердых диэлектриков

Электрические свойства твердых диэлектриков

Электропроводность материалов объясняет зонная теория.
Все вещества состоят из ядер (протоны + нейтроны) и электронов, распределённых по орбитам, которым соответствуют определённые энергетические уровни. У проводников валентные электроны, наиболее удалённые от ядра, довольно свободно переходят от одного атома к другому, что и соответствует большой электрической проводимости. Для этого (то есть перехода на другой уровень) электроны должны возбуждаться, то есть получать добавочную энергию – порциями, квантами. В невозбуждённом состоянии электроны могут иметь только определённые значения энергии, соответствующее энергетическим уровням оболочек атома. Эти уровни образуют полосу – зону, которая заполнена электронами. В атомах есть и другие, «дозволенные» уровни энергии, которые электроны могут занять, если получат дополнительную энергию, например, при нагреве. Связь электронов с атомами в таких случаях является непрочной, и электроны легко меняются местами, то есть передвигаются. Если значения энергии заполненной зоны и зоны проводимости перекрываются, то при незначительном возбуждении электроны будут переходить из заполненной зоны в зону проводимости – то есть материал обладает большой электрической проводимостью, это и есть проводник.
У других материалов между уровнями энергии, соответствующих заполненной зоне и зоне проводимости, имеется промежуточная зона недозволенных уровней (запрещённая зона). Это зона значений энергии, которые электроны данного тела не могут иметь. Если запрещённая зона широка, то есть нужно иметь много энергии для ее преодоления, то для перевода электронов из заполненной зоны в зону проводимости теплового возбуждения недостаточно.
Такие материалы называются диэлектриками, в них переход заметного числа электронов в зону проводимости – случайное явление. В большинстве диэлектриков электропроводность в основном не электронная, а ионная, вызванная движением в электрическом поле свободных ионов, появляющихся вследствие диссоциации примесей и части молекул самого диэлектрика.
Основные электрические характеристики диэлектрика:

1) удельное электрическое сопротивление ρv и ρs;

2) диэлектрическая проницаемость Е, относительная – Еr = E/E;

3) электрическая прочность Епр = Uпр : h, В/м.
1. Сопротивление диэлектрика
Способность материала проводить электрический ток называется электрической проводимостью или электропроводностью. Величина ей обратная – электрическое сопротивление.
Если для проводников удельное сопротивление более 10 -9 Ом .

м, то для диэлектриков оно более 10 10 ÷ 10 19 Ом . м, поэтому диэлектрики используются как изоляционный материал. Величина сопротивления диэлектриков говорит о том, что сквозной ток проводимости в диэлектриках очень и очень мал. Однако он существует и его тоже надо учитывать.
Ток в диэлектрике, вызванный электропроводностью, называют током утечки. В твёрдых диэлектриках различают два тока утечки – объёмный Iv, идущий через толщу диэлектрика, и поверхностный Is, идущий по поверхности диэлектрика. Сумма этих токов определяет общий ток утечки. Соответственно двум видам токов утечки различают объёмное удельное сопротивление ρv и поверхностное удельное сопротивление ρs. Единица измерения объёмного удельного сопротивления [ρv] – Ом . м. Удельное поверхностное сопротивление численно равно сопротивлению квадрата поверхности материала, когда постоянный ток подведён к двум противоположным сторонам квадрата: [ρs] = 1 Ом. Тогда единицы измерения удельных проводимостей: объемной – См/м (сименс/м), поверхностной – См (сименс).

Для определения ρv и ρs необходимо разделить в образце диэлектрика токи утечки Iv и Is, замерить их отдельно, по напряжению и току посчитать сопротивление и потом уже рассчитать ρv и ρs. Для этого используется трёхэлектродная схема (см. учебник).

2. Относительная диэлектрическая проницаемость
Относительная диэлектрическая проницаемость εr показывает, во сколько раз сила взаимодействия двух электрических зарядов в этом диэлектрике меньше силы взаимодействия этих зарядов в вакууме. Существует также понятие абсолютная диэлектрическая проницаемость:

где εr – безразмерная величина, а εо – диэлектрическая проницаемость вакуума (называется также электрической постоянной, это – коэффициент пропорциональности в законе Кулона, ее значение зависит от системы единиц, в СИ она равна 8,85 . 10 -12 или 8,86 . 10 -12 Ф/м (фарад/метр). Диэлектрическая проницаемость характеризует процесс поляризации диэлектрика во внешнем электрическом поле.
Поляризациейназывается смещение электрических зарядов в диэлектрике под действием приложенного электрического поля. В атомах и молекулах диэлектрика электроны и ионы упруго связаны, в целом они электрически нейтральны. При наложении электрического поля по-разному заряженные частицы атома стремятся к противоположно заряженным электродам, при этом они изменяют своё пространственное положение, они смещаются друг относительно друга (хотя и не намного). При этом частицы превратятся в диполи, то есть материальные частицы, несущие на одном конце положительный, на другом отрицательный заряды, пространственно смещённые на некоторое расстояние и электрически не компенсирующие друг друга.
Таким образом, под действием электрического поля в изоляторе возникает особый электрический ток в форме пространственно ограниченного перемещения остающихся взаимосвязанными положительных и отрицательных зарядов. Такой ток называется током смещения. Если направление поля остаётся неизменным, ток смещения длится короткое время, затем прекращается. Если поле будет периодически менять свой знак, заряды будут перемещаться то в одну, то в другую сторону, и в диэлектрике всё время будет иметь место ток смещения.
Различают следующие виды поляризации:
1) электронная – смещение электронов внутри атомов (на малые расстояния в пределах данного атома);
2) ионная – образуется смещением ионов во внешнем электрическом поле, если диэлектрик является ионным кристаллом, например, поваренная соль NaCl: (–)←Na + Cl — →(+). Ионы смещаются на небольшие расстояния от положения равновесия.
Эти два вида поляризации называются упругими, так как при исчезновении электрического поля электроны и ионы возвращаются на свои места без необратимого поглощения энергии. Электронная поляризация есть всегда, в любом диэлектрике при его попадании во внешнее электрическое поле, ионная накладывается на электронную (но её может и не быть).
Другие виды поляризации называются неупругими, так как происходят с потерями энергии, которая переходит в тепло).
3) дипольная поляризация – возникает, если молекулы диэлектрика несимметричны и поэтому обладают электрическим дипольным моментом (вода, гидроксильная группа ОН и другие). Без внешнего электрического поля все молекулы-диполи ориентированы по-разному, в целом диэлектрик неполяризован. Во внешнем электрическом поле все молекулы-диполи выстраиваются в направлении поля, на поверхнистях диэлектрика появляются заряды. Поворот молекул происходит с «трением», то есть потерями энергии. Дипольная поляризация добавляется к ионной (если она есть) и электронной (которая есть всегда) поляризации.

Читайте также:  Как сделать из салфеток что нибудь

4) ионно-релаксационная – в некоторых твёрдых диэлектриках отдельные ионы слабо связаны с другими (из-за примесей, дефектов кристаллической решётки, своей химической природы) и могут быть переброшены внешним электрическим полем.
5) миграционная поляризация – образуется в слоистой, твёрдой изоляции, состоящей из разных диэлектриков.

6) доменная поляризация – присуща сегнетоэлектрикам, веществам, в которых имеется спонтанная поляризация – без наличия внешнего электрического поля в диэлектрике есть области со смещенными электрическими зарядами. Во внешнем электрическом поле они могут переориентироваться, значит, их относительная диэлектрическая проницаемость зависит от напряженности электрического поля, а также от температуры.
От комбинации разных видов поляризации (то есть от вида диэлектрика) зависит способность материала к поляризации, которая и характеризуется абсолютной диэлектрической проницаемостью. Относительная диэлектрическая проницаемость определяет ёмкостные свойства диэлектрика, показывает, во сколько раз ёмкость конденсатора с диэлектриком больше ёмкости того же самого конденсатора в вакууме.

3. Электрическая прочность
Любой диэлектрик может быть использован при напряжениях, не превышающих предельных значений, характерных для него в определённых условиях. При напряжении выше этих предельных значений наступает явление пробоя диэлектрика – то есть полная потеря им изоляционных свойств с образованием канала высокой проводимости, приводящего к короткому замыканию электродов. Напряжение, при котором происходит пробой, называется пробивным напряжениемUпр. Напряжённость электрического поля, при которой произошёл пробой, называется электрической прочностью Епр =Uпр / h, В/м, где h – расстояние между плоскими электродами (эта формула справедлива для равномерного поля). То есть электрическая прочность диэлектрика Епр – это напряжённость электрического поля, при достижении которой в какой-либо точке диэлектрика происходит пробой.
На твёрдых образцах вместо пробоя – КЗ через толщу диэлектрика – может наблюдаться явление поверхностного разрядаили перекрытия, когда КЗ происходит за счёт пробоя окружающей среды – воздуха, трансформаторного масла – по поверхности диэлектрика. Напряжение перекрытия является параметром данной электроизоляционной конструкции, но зависит также от материала диэлектрика.

Лекция 1.3.1. Поляризация диэлектриков

Диэлектрические материалы

Диэлектрики — вещества, способные поляризоваться и сохранять электростатическое поле. Это широкий класс электротехнических материалов: газообразных, жидких и твердых, природных и интетических, органических, неорганических и элементоорганических. По выполняемым функциям они делятся на пассивные и активные. Пассивные диэлектрики применяются в качестве электроизоляционных материалов. В активных диэлектриках (сегнетоэлектрики, пьезоэлектрики и др.), электрические свойства зависят от управляющих сигналов, способных изменять характеристики электротехнических устройств и приборов.

По электрическому строению молекул различают неполярные и полярные диэлектрики. Неполярные диэлектрики состоят из неполярных (симметричных) молекул, в которых центры положительных и отрицательных зарядов совпадают. Полярные диэлектрики состоят из несимметричных молекул (диполей). Дипольная молекула характеризуется дипольным моментом – р.

В процессе работы электротехнических устройств диэлектрик нагревается, так как часть электрической энергии в нем рассеивается в виде тепла. Диэлектрические потери сильно зависят от частоты тока, особенно у полярных диэлектриков, поэтому они являются низкочастотными. В качестве высокочастотных используются неполярные диэлектрики.

Читайте также:  Огурцы капучино f1 отзывы

Основные электрические свойства диэлектриков и их характеристики приведены в табл. 3.

Таблица 3 — Электрические свойства диэлектриков и их характеристики

Свойство Характеристика Обозначение
Поляризация Относительная диэлектричес-кая проницаемость ε
Электропроводность Удельное электрическое сопротивление ρ, Ом·м
Диэлектрические потери Тангенс угла диэлектрических потерь tgδ
Электрическая прочность Пробивная напряженность Епр, МВ/м

Поляризация – это ограниченное смещение связанных зарядов или ориентация дипольных молекул в электрическом поле. Под влиянием силовых линий электрического поля заряды диэлектрика смещаются по направлению действующих сил в зависимости величины напряженности. При отсутствии электрического поля заряды возвращаются в прежнее состояние.

Различают два вида поляризации: поляризация мгновенная, вполне упругая, без выделения энергии рассеяния, т.е. без выделения тепла, за время 10 -15 – 10 -13 с; поляризация не совершается мгновенно, а нарастает или убывает замедленно и сопровождается рассеянием энергии в диэлектрике, т.е. его нагревает — это релаксационная поляризация за время от 10 -8 до 10 2 с.

К первому виду относятся электронная и ионная поляризации.

Электронная поляризация (Cэ, Qэ) – упругое смещение и деформация электронных оболочек атомов и ионов за время 10 -15 с. Наблюдается такая поляризация для всех видов диэлектриков и не связана с потерей энергии, а диэлектрическая проницаемость вещества численно равна квадрату показателя преломления света n 2 .

Ионная поляризация (Cи, Qи) характерна для твердых тел с ионным строением и обуславливается смещением (колебанием) упруго связанных ионов в узлах кристаллической решетки за время 10 -13 с. С повышением температуры смещение усиливается и в результате ослабления упругих сил между ионами, а температурный коэффициент диэлектрической проницаемости ионных диэлектриков оказывается положительным.

Ко второму виду относят все релаксационные поляризации.

Дипольно-релаксационная поляризация (Cдр, rдр, Qдр) связана с тепловым движением диполей при полярной связи между молекулами. Поворот диполей в направлении электрического поля требует преодоления некоторого сопротивления, выделения энергии в виде тепла (rдр). Время релаксации здесь порядка 10 -8 – 10 -6 с – это промежуток времени, в течение которого упорядоченность ориентированных электрическим полем диполей после снятия поля уменьшится вследствие наличия тепловых движений в 2,7 раза от первоначального значения.

Ионно-релаксационная поляризация (Cир, rир, Qир) наблюдается в неорганических стеклах и в некоторых веществах с неплотной упаковкой ионов. Слабосвязанные ионы вещества под воздействием внешнего электрического поля среди хаотических тепловых движений получают избыточные набросы в направлении поля и смещаются по силовой линии его. После снятия электрического поля ориентация ионов ослабевает по экспоненциальному закону. Время релаксации, энергия активации и частота собственных колебаний происходит в течение 10 -6 – 10 -4 с и связано законом

(13)

где f – частота собственных колебаний частиц; v — энергия активации; k –постоянная Больцмана (8,63 10 -5 ЭВ/град); T – абсолютная температура по К 0 .

Электронно — релаксационная поляризация (Cэр, rэр, Qэр)возникает за счет возбужденных тепловых энергий избыточных, дефектных электронов или «дырок» за время 10 -8 – 10 -6 с. Она характерна для диэлектриков с высокими показателями преломления, большим внутренним полем и электронной электропроводностью: двуокись титана с примесями, Са+2, Ва+2, ряда соединений на основе окислов металлов переменной валентности – титана, ниобия, висмута. При этой поляризации имеет место высокая диэлектрическая проницаемость и при отрицательных температурах наличие максимума в температурной зависимости e ( диэлектрической проницаемости). e для титаносодержащей керамики уменьшается с возрастанием частоты.

Структурные поляризации различают:

Миграционная поляризация (Cм, rм, Qм)протекает в твердых телах неоднородной структуры при макроскопических неоднородностях, слоях, границ раздела или наличии примесей за время порядка 10 2 с.Эта поляризация проявляется при низких частотах и связана со значительным рассеянием энергии. Причинами такой поляризации являются проводящие и полупроводящие включения в технических, сложных диэлектриках, наличие слоев с различной проводимостью и т.д. На границах раздела между слоями в диэлектрике и в при электродных слоях идет накопление зарядов медленно движущихся ионов – это эффект межслоевой или структурной высоковольтной поляризации. Для сегнетоэлектриков различают спонтанную или самопроизвольную поляризацию,(Cсп, rсп, Qсп), когда идет значительное рассеяние энергии или выделение тепла за счет доменов (отдельные области, вращающихся электронных оболочек) , смещающихся в электрическом поле, т. е. еще в отсутствии электрического поля в веществе есть электрические моменты, а при некоторой напряженности внешнего поля наступает насыщение и наблюдается возрастание поляризации.

Классификация диэлектриков по виду поляризации.

Первая группа – диэлектрики, обладающие электронной и ионной мгновенной поляризациями. Структура таких материалов состоит из нейтральных молекул, может быть слабополярной и характерна для твердых кристаллических и аморфных материалов таких, как парафин, сера, полистирол, а также жидкие и газообразные материалы как бензол водород и др.

Читайте также:  Можно пересадить цветущий цикламен

Вторая группа – диэлектрики, обладающие электронной и дипольно-релаксационной поляризациями – это полярные органические жидкие, полужидкие, твердые вещества как маслоканифольные компаунды, эпоксидные смолы, целлюлоза, хлорированные углеводороды и т.п. материалы.

Третья группа – диэлектрики твердые неорганические, которые делятся на две подгруппы, отличающиеся по электрическим характеристикам – а) диэлектрики, обладающие электронной и дипольно-релаксационной поляризациями, такие как кварц, слюда, каменная соль, корунд, рутил; б) диэлектрики с электронной и ионной релаксационными поляризациями – это стекла, материалы со стекловидной фазой (фарфор, микалекс и т.п.) и кристаллические диэлектрики с неплотной упаковкой ионов.

Четвертая группа – это диэлектрики, обладающие электронной и ионной мгновенными и структурной поляризациями, что свойственно многим позиционным, сложным, слоистым и сегнетоэлектрикам материалам.

| следующая лекция ==>
Зонная структура полупроводников | Лекция 1.3.2. Диэлектрическая проницаемость

Дата добавления: 2014-01-03 ; Просмотров: 13852 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Основные электрические свойства диэлектриков и их характеристики приведены в табл. 12.

Электрические свойства диэлектриков и их характеристики

Тангенс угла диэлектриче-

3.1.1. Поляризация диэлектриков

Поляризация — это упругое смещение связанных зарядов или ориентация молекул диэлектрика в электрическом поле. Поляризация сопровождается появлением на поверхности диэлектрика связанных электрических зарядов.

Способность диэлектрика к поляризации характеризуется относительной диэлектрической проницаемостью

где С — емкость конденсатора с диэлектриком; С 0 — емкость конденсатора без диэлектрика (в вакууме).

Различают следующие виды поляризации:

• электронная поляризация — упругое смещение и деформация электронных оболочек атомов под действием внешнего поля (рис. 13,а). Она свойственна всем веществам, но играет определяющую роль в неполярных диэлектриках (газообразных,

жидких и твердых). Такая поляризация протекает почти мгновенно ( τ = 10 -15 с), без потерь энергии, ее величина не зависит от частоты поля;

Рис. 13. Схема возникновения поляризации: а — электронной, б — ионной, в — ди-

польно-релаксационной, г — спонтанной (самопроизвольной)

• ионная поляризация обусловлена смещением упруго связанных ионов в пределах межатомного расстояния (рис. 13,б). Она характерна для веществ с ионным строением, время поляризации невелико ( τ = 10 -13 с), происходит практически без потерь энергии;

• дипольно-релаксационная поляризация заключается в ори-

ентации дипольных молекул под действием сил поля (рис. 13,в).

Она присуща полярным диэлектрикам, протекает во времени ( τ = 10 -2 с) и сопровождается потерями энергии;

• самопроизвольная (спонтанная) поляризация наблюдается у сегнетоэлектриков. Это вещества, состоящие из наэлектризованных областей — доменов, обладающих электрическим моментом. В отсутствие внешнего поля домены расположены произвольно, и суммарный момент равен нулю. Во внешнем поле происходит переориентация доменов и создается эффект сильной поляризации (рис. 13,г): относительная диэлектриче-

ская проницаемость достигает ε = 10 5 .

Влияние температуры на поляризацию диэлектриков

Изменение относительной диэлектрической проницаемости при изменении температуры характеризуется температурным коэффициентом

При электронной поляризации относительная диэлектрическая проницаемость несколько уменьшается с повышением температуры вследствие уменьшения плотности вещества (α ε ε >0) (кривая 2 на рис. 14). Дипольнорелаксационная поляризация сильно зависит от температуры среды. С увеличением температуры силы межмолекулярного взаимодействия ослабевают, и дипольные молекулы легче ориентируются во внешнем поле — ε растет. При дальнейшем повышении температуры интенсивное тепловое движение молекул ослабляет ориентирующее влияние поля — ε уменьшается (кривая 3 на рис. 14). При самопроизвольной поляризации ее величина растет до определенной температуры ( Т к — точка Кюри), выше которой сегнотоэлектрик теряет свои специфические свойства (кривая 4 на рис. 14).

Рис. 14. Температурные зависимости относительной диэлектрической прони-

цаемости при поляризации: 1 — электронной, 2 — ионной, 3 — дипольнорелаксационной, 4 — спонтанной

Влияние напряженности электрического поля на поляризацию диэлектриков

По влиянию напряженности электрического поля на относительную диэлектрическую проницаемость различают диэлектрики линейные и нелинейные. Емкость конденсатора с линейным диэлектриком зависит только от его геометрических размеров, и ε не зависит от напряженности внешнего поля (рис. 15,а).

К линейным диэлектрикам относится подавляющее число диэлектриков:

• неполярные диэлектрики с электронной поляризацией — газы, жидкости, твердые вещества кристаллические и аморфные (бензол, парафин, сера, полиэтилен и др.);

• полярные диэлектрики с дипольно-релаксационной и электронной поляризацией — органические жидкие и твердые вещества (хлорированные углеводороды, большинство органических соединений на основе полимеров и др.);

• неорганические ионные соединения с ионной и электронной поляризацией — кристаллические вещества с плотной упаковкой ионов (кварц, слюда, корунд — Al 2 O 3 , рутил — TiO 2 и др.);

Ссылка на основную публикацию
Что можно сделать из остатков фанеры
Если после проведения ремонтных работ остались определенные куски фанеры, это вовсе не повод от них немедленно избавляться. Данный материал еще...
Чем лечить ушибы и растяжения
Автор: seomanager · Май 15, 2019 Ушибы и растяжения считаются самыми распространенными травмами, в такой ситуации как можно раньше должна...
Чем лучше всего гладить рубашки
Каждый раз, когда направляешься на работу или попадаешь в людное место, волей не волей, обращаешь внимание на мужчин, которые ходят...
Что можно сделать из скороварки
Всем привет! Давно я обещал написать эту статью, но постоянно ее откладывал. Пришло время исполнить обещание. Сегодня я буду рассказывать,...
Adblock detector