Что значит полевой транзистор

Что значит полевой транзистор

Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

  1. Тип проводимости канала: n или р. Фактор определяет полярность управляющего напряжения.
  2. По структуре. С р-n-переходом сплавные, диффузионные, МДП (МОП), с барьером Шоттки, тонкопленочные.
  3. Число электродов – 3 или 4. В последнем случае подложка рассматривается обособленным субъектом, позволяя управлять протеканием тока по каналу (помимо затвора).
  4. Материал проводника. Сегодня распространены кремний, германий, арсенид галлия. Материал полупроводника маркируется условным обозначением буквами (К, Г, А) или (в изделиях военной промышленности) цифрами (1, 2, 3).
  5. Класс применения не входит в маркировку, указывается справочниками, дающими сведения, что полевой транзистор часто входит в состав усилителей, радиоприемных устройств. В мировой практике встречается деление по применяемости на следующие 5 групп: усилители высокой, низкой частоты, постоянного тока, модуляторы, ключевые.

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки – арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

  1. Отсутствие негативных явлений на стыке с каналом, истоком, стоком: светочувствительность, паразитное управление по подложке, гистерезис параметров.
  2. Термостабильность в процессе технологических циклов изготовления изделия: устойчивость к отжигу, эпитаксии. Отсутствие диффузии примесей в активные слои, вызванной этим деградации.
  3. Минимум примесей. Требование тесно связано с предыдущим.
  4. Качественная кристаллическая решетка, минимум дефектов.

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

Объемный положительный заряд в оксиде влияет на значение порогового напряжения, при котором отпирается канал. Параметр обусловливает скорость переключения и определяет ток утечки (ниже порога). Вдобавок, на срабатывание влияют материал затвора, толщина оксидного слоя, концентрация примесей. Таким образом, результат опять сводится к технологии. Чтобы получить заданный режим, подбирают материалы, геометрические размеры, процесс изготовления с пониженными температурами. Отдельные приемы позволят также уменьшить количество дефектов, что благоприятно сказывается на снижении паразитного заряда.

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от "электрическое поле". Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. "Полевики" по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

Читайте также:  Назначение и принцип действия порошкового огнетушителя

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение.

"Полевик" с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: "полевик", "мосфет", "ключ".

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора.

Основные преимущества MOSFET

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления.Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения.Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs

Схема включения MOSFET

Традиционная, классическая схема включения "мосфет", работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.

Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.

Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.

Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

МОП транзис торы, используемые в цифровой электронике, делятся на два типа.

  1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
  2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

Другие популярные статьи

MacBook не включается. Что делать?

Читателей за год: 10216

Пожалуй одна из самых распространенных неисправностей, заявленная клиентами при сдаче в ремонт своего MacBook — не включается. В этой заметке рассмотрим следующие вопросы.

Типовые неисправности MacBook Pro A1398

Читателей за год: 9192

МасBook Pro Retina A1398 появился в середине 2012 года. С 2012 года было выпущено 5 платформ A1398 и с десяток комплектаций. К сожалению, все модели имеют типовые неисправности.

Выключается iPhone при достаточном заряде батареи

Читателей за год: 8327

Чего только не случается со смартфонами: падают, тонут, иногда просто теряются. И все это может стать причиной возникновений неисправностей в смартфоне. Но хороший дефект всегда себя покажет. А что если причина возникновения неисправности неизвестна?

Оставить комментарий

Что делать если Mac не включается? (видео) Новое в блоге Централизованное управление мобильными устройствами iOS через MDM 16 декабря 2019 г. Поломки iMac. Часть 4. Неисправность видеокарты iMac 10 октября 2019 г. Цены на iPhone резко растут, говорят аналитики. Или нет? 7 октября 2019 г. В США и ЕС запретили перевозить в самолётах MacBook Pro 2015 года из-за дефекта батареи 27 сентября 2019 г. Список расширенных программ замены и ремонта MacBook от Apple 24 сентября 2019 г. Проверить статус заказа

Введите номер телефона, указанный в заказе:

Спасибо за проделанную работу , в двух сервисах разводили на деньги , а здесь Александр выполнил ремонт меньше чем за сутки и взял с меня в три ! раза меньше денег , чем просили в другом сервисном.

Приносили макбук ретина 2014 после другой мастерской, которые приговорили его к смерти) (неисправен процессор) 1 день ремонта и ноутбук готов) Мастер глубоко погружен в свою работу и знает все тонкости любой неисправности, рекомендую!

Хочу выразить благодарность мастеру Александру т.к. он смог разобраться в проблеме с мои macbook pro 15 2013г. — зависал. До него был в двух сервисах, где приговаривали мат.плату к замене, а у него удалось обойтись ремонтом, что почти в 2 раза дешевле.

Спасибо Александру за то, что спас мой ноутбук от недобросовестных мастеров. Поменяли с Александром клавиатуру, устранили последствия залития и почистили. Все сделали очень быстро, я даже в шоке была. Если вдруг что-то еще случится с моим маком, то сразу

Александр — мастер золотые руки, которому с уверенностью можно доверить здоровье любимых гаджетов.

Отличный сервис по ремонту любой техники эпл. Обращался два раза, оба раза доволен. Всё четко, по делу, и достаточно выгодно! Теперь друзьям рекомендую, они тоже довольны)

Делал чистку от пыли и замену термопасты на MacBook. Работу выполнили за 20 минут, результатом доволен

Сдавал MacBook Pro A1398, стандартная проблема — пропадание изображения при нагрузке. Обращался в несколько спецализированных сервисов Apple, но варианта у них было 2 — менять материнку или прогревать видеочип. При чем ценник был заоблачный. Нашел подробн

Добрый день, друзья!

Читайте также:  Как делать свечи из воска своими руками

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Кстати, купить полевые транзисторы можно вот здесь .

Обсуждение: 55 комментариев

ЗАМЕЧАТЕЛЬНАЯ СТАТЬЯ… Правда — не проще дополнить — что любой транзистор — это просто два диода, и проверить тестером — 0.6 в падения. А у полевого — 0.4 Чем городить огород.

Игорь, «два диода» — это биполярный транзистор. У полевого — только один диод (защитный), включенный параллельно каналу. Это у тех полевиков, про которые я писал.

Опечатка: На схеме для проверки ПТ необходимо резистор R1 (1k) переименовать на R2 (1k)

Что работает? Полевик?

кажется нашёл, что искал, но всё равно irf3808 горят как спички, запитываю ПН от акб 12в 6о а/ч, а у фета 130 ампер.

Читайте также:  Помогают ли пластыри от курения

Иваныч, у IRF3808 Vdss=75 В. А у преобразователя какое выходное напряжение?

понравилось,но извените-R1,R2 ПО 2КОМ а R3-1ком » На схеме для проверки ПТ необходимо резистор R1 (1k) переименовать на R2 (1k)».Виктор,скажите на сегодня в схеме-всё ок или нет.простите за непонятливость.С наступающим!

Да, я схему (точнее нумерацию элементов) давно подправил. В схеме все ок.
Николай, и Вас с наступающим Новым годом, и всего самого наилучшего!

Ув.Виктор!ответьте-как должно осуществляться если на схеме есть и «общий» и «земля»
даю цитату: Чтобы схема выглядела менее запутанно, общий провод нередко обозначают короткой утолщенной черточкой, соединенной с проводом, и такие же черточки ставят на концах выводов деталей, разбросанных по всей схеме. Это значит, естественно, что такие выводы нужно припаять к общему проводу.
Следует отличать обозначение общего провода от знака заземления, состоящего из трех параллельных черточек разной длины. Такой знак чаще всего встречается на схемах простых приемников, для хорошей работы которых нужна не только наружная антенна, но и заземление — проводник, подпаянный к зарытому в землю металлическому предмету. Как правило, заземляют общий провод конструкции.

Общий — это общий, земля — это земля. Выводы, подключенные к общему проводу, должны быть соединены между собой, иначе схема не будет работать. Во многих случаях схема будет работать нормально, если общий провод ее не заземлять. Например, в проверочной схеме в статье ее общий провод можно не заземлять — все и так будет работать.
Заземление нужно, нужно в частности, в силовых цепях для защиты от поражения электрическим током. На западе давно применяется трехпроводная система питания — фазный провод, нулевой провод и земля. Для нормальной работы защиты земельный провод должен быть соединен с металлическим штырем (их может быть несколько), вкопанным в землю.

Спасибо,вопрос возник ещё и потому,что в других схемах рисуют
на одной схеме вер_с_гор;вер_с_нескол.гор(как заземление)(может мно-гие СЕЙЧАС рисуют ЧТО ПОНРАВИТЬСЯ(как красивее).

Да, в этом вопросе существует некоторая путаница. Наверное, правильнее будет, если рисовать схемы, не требующие заземления, с одной горизонтальной чертой.

существуют полевые транзисторы как с n-каналом, так и с p-каналом, что используется при производстве комплементарных пар транзисторов.

Да, это в интегральной технологии очень широко используется. А если брать отдельно, то транзисторы с n-каналом используются гораздо чаще, чем с p-каналом.

Здравствуйте.По Вашей схеме можно проверить любые ПТ? Ведь они различаются по напряжению. Извините за дилетантский вопрос.

Геннадий, можно проверить ПТ с n-каналом. За все транзисторы говорить не буду (всего многообразия их не знаю). Большинство проверить можно.
При замыкании кнопки к затвору прилагается напряжение +4 В. Этого хватает, чтобы ПТ открылся, и сопротивление открытого канала стало небольшим. В то же время это меньше предельного напряжения исток-затвор, поэтому транзистор из строя не выйдет. Если придется проверять какой-то хитрый транзистор, надо посмотреть даташит. Главное здесь — чтобы канал был хорошо открыт, и прилагаемые напряжения не превысили максимально допустимых.

а слабо было сначала рассказать про ПТ с управляющим каналом хотя бы «n» типа и сказать , что он симметричный, что канал хоть «n» или «р» типа можно менять местами ток всё равно будет проходить не зависимо от полярности полупроводника на выводах стока и истока если на затворе нет напряжения И, только когда воздействовать на ток в канале поперечным полем . правильно. приложенному к затвору и одному из других электродов — можно остановить ток в канале.
А после, уже рассказать про ПТ со встроенным и индуцированным каналом, про то что у них затвор полностью изолирован от этих каналов и это одно из главных его свойств. потому как для индуцированного канала подача на затвор соответствующей полярности напряжения относительно подложки канал начинает пропускать ток, а отсутствие напряжения на затворе канал закрыт и не пропускает ток.
Что же касаемо ПТ с изолир. затвором и встроенным каналом — картина тока через встроенный канал отличается от выше перечисленных структур ПТ. Отличие в том, что канал пропускает незначительный ток от приложенного напряжения между стоком и истоком как и канал ПТ с управляющим p-n переходом о котором шла речь в самом начале. Но, почему говорим незначительный ток — да потому, что встроенный канал имеет туже проводимость что сток и исток только очень слабо легированную, в то время как сток и исток всегда сильно легированы так же как весь канал в ПТ с управляющим p-n переходом. Вот это и придает этому типу ПТ его характеристики и отличительные свойства от ПТ с индуцированным каналом и ПТ с управляющим p-n переходом.
Так что в ПТ со встроенным слаболегтрованым каналом — своя структура транзистора и его способ управления.
И как же он управляется и как при этом воздействует на ток в канале.
Очень просто: ток как уже стало понятно протекает но не значительный. Такое нас конечно не устраивает. Всем известны такие термины как «отсечка» и «обогащение» вот они то нам и помогут управлять этим полудохлым каналом. При подаче соответствующей полярности управляющего напряжения на затвор и исток канал можно настолько отсечь, выгнать из него основные носители зарядов соответствующего типа проводимости канала, что он полностью заглохнет. А поменяв полярность управляющего напряжения между затвором и истоком, можно создать условия для лавинного втягивания основных носителей зарядов соответствующего типа проводимости канала и он — этот канал, станет проводить большой ток насколько это возможно:))
Таким образом стало понятно как управлять тем или тем ПТ и все это благодаря только их структуры.(что за слово структура, хрень какая-то, просто скажем — внутреннего устройства, от которого и зависит способ подключения и управления)

KIRPICH, изложение работы ПТ велось применительно к компьютерной технике. Блог у меня о компьютерах. Поэтому и был рассмотрен только ПТ с индуцированным n-каналом. Такие как раз и используются в цифровой технике. ПТ в сильноточном стабилизаторе схемы питания ядра процессора, в блоке питания компьютера, в бесперебойных источниках питания как раз такие.
Была приведена простая аналогия, позволяющая уяснить принцип работы.
А так, да — существуют несколько типов ПТ. Но я не стал усложнять картину, и не рассказал об обогащенных и обедненных ПТ, об отсечке, крутизне, лавинном пробое, V-канавке, основных и неосновных носителях в канале.
Сколько терминов, скорее всего, сразу отпугнет новичка.
После Вашего коммента думаю — может, продолжение написать?

Приветствую, разобрал телевизор, который не включался. При включении в розетку и подключенном инверторе пищит(с одинаковым интервалом) полевой транзистор 2SK3532 на блоке питания. При отключении инвертора писк пропадает. Подскажите поможет ли замена или причина не в нем?

Иван, я не слышал, чтобы полевой транзистор пищал. В импульсных блоках питания если и пищит что, так это импульсный трансформатор.
Транзистор проверьте, как в статье описано. А вообще, надо ковырять всю схему.

Виктор! если не трудно расскажи о схеме отвертки-индикатора там наверное твоя проверочная схема задействона! подробно о пт! пробник-шток09050. спасибо. Викор .г.Тверь

Виктор, именно эту отвертку-индикатор я не ковырял. Могу предположить, что это обычный указатель напряжения. Скорее всего, там стоит обычная неоновая лампочка и последовательно с ней резистор. Если коснуться фазы 220 В концом отвертки и пальцем металлической площадки на торце, то через лампочку и тело человека потечет небольшой ток, и лампочка загорится, указывая на наличие напряжения.

Добрый вечер Виктор. Я прочитал вашу статью о ПТторе, все понятно и просто! Ест вопрос. Можноли заменить ПТ на биполярный т-р. С уважением Бахром Узбекистан.

Бахром, иногда можно, но далеко не всегда. Зависит от конкретной схемы. И полевые транзисторы — они ведь разных классов бывают.

Если я правильно понимаю, то:
S это исток (англ. source) — электрод, из которого в канал входят основные носители заряда;
D это сток (англ. drain) — электрод, через который из канала уходят основные носители заряда;
почему, исходя из Вашей схемы, входящее напряжение приложено к D (стоку) , а исходящее к S (истоку), учитывая, что ток «течет» от плюса к минусу ?

А что такое «входящее» и «исходящее» напряжение?
В ПТ с каналом n-типа основные носители — электроны, частицы с отрицательным зарядом. Исток их и поставляет.

Биполярныйй транзистор управляется током полевой полем. У биполярногооооо структура pnp или npn у полевого металл окисел полупроводник. Вот и думай Бахром можно заменить или нет. И диод еще для защиты от обратного напряжения.

Ссылка на основную публикацию
Чем лечить ушибы и растяжения
Автор: seomanager · Май 15, 2019 Ушибы и растяжения считаются самыми распространенными травмами, в такой ситуации как можно раньше должна...
Фильтр барьер эксперт жесткость
Фильтр для жесткой воды обеспечивает комплексную очистку от солей жесткости и всех основных содержащихся в ней вредных примесей. Устранение жесткости...
Фильтр грязевик с магнитными вставками
ПЕРЕХОДЫ ЭКСЦЕНТРИЧЕСКИЕ И КОНЦЕНТРИЧЕСКИЕ ДЛЯ ТРУБОПРОВОДОВ СПЕЦИАЛЬНЫЕ И ОБЩЕПРОМЫШЛЕННЫЕ ДЕТАЛИ ТРУБОПРОВОДОВ Складские остатки Акция, цены могут быть снижены, звоните! Eng...
Чем лучше всего гладить рубашки
Каждый раз, когда направляешься на работу или попадаешь в людное место, волей не волей, обращаешь внимание на мужчин, которые ходят...
Adblock detector